Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 359: 121109, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38723500

RESUMO

The impact of climate change on water availability and quality has affected agricultural irrigation. The use of treated wastewater can alleviate water in agriculture. Nevertheless, it is imperative to ensure proper treatment of wastewater before reuse, in compliance with current regulations of this practice. In decentralized agricultural scenarios, the lack of adequate treatment facilities poses a challenge in providing treated wastewater for irrigation. Hence, there is a critical need to develop and implement innovative, feasible, and sustainable treatment solutions to secure the use of this alternative water source. This study proposes the integration of intensive treatment solutions and natural treatment systems, specifically, the combination of up-flow anaerobic sludge blanket reactor (UASB), anaerobic membrane bioreactor (AnMBR), constructed wetlands (CWs), and ultraviolet (UV) disinfection. For this purpose, a novel demo-scale plant was designed, constructed and implemented to test wastewater treatment and evaluate the capability of the proposed system to provide an effluent with a quality in compliance with the current European wastewater reuse regulatory framework. In addition, carbon-sequestration and energy analyses were conducted to assess the sustainability of the proposed treatment approach. This research confirmed that UASB rector can be employed for biogas production (2.5 L h-1) and energy recovery from organic matter degradation, but its effluent requires further treatment steps to be reused in agricultural irrigation. The AnMBR effluent complied with class A standards for E. coli, boasting a concentration of 0 CFU 100 mL-1, and nearly negligible TSS levels. However, further reduction of BOD5 (35 mg L-1) is required to reach water quality class A. CWs efficiently produced effluent with BOD5 below 10 mg L-1 and TSS close to 0 mg L-1, making it suitable for water reuse and meeting class A standards. Furthermore, CWs demonstrated significantly higher energy efficiency compared to intensive treatment systems. Nonetheless, the inclusion of a UV disinfection unit after CWs was required to attain water class B standards.

2.
Water Res ; 207: 117831, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34798451

RESUMO

In this paper, a new regional methodological approach for determining direct and indirect emissions from wastewater treatment plants (WWTPs) is proposed. Additionally, an entire territorial wastewater treatment service located in the northern Italy and serving 411,484 PE was assessed. The most accurate emission factor identification is presented using appropriate on-site measurements, monitoring different aerated operational units and sampling several streams in 12 relevant WWTPs of different treatment capacities, ranging from 3000 to 73,000 PE. Dissolved greenhouse gas (GHG) concentrations from 0.2 to 24 mgN2O/L, 0.1 to 1 mgCH4/L and 1.8 to 52 mgCO2/L in effluent flows were detected. Specific carbon footprints resulted in the emissions of 0.04-0.20 tonCO2eq/PE/y, varying as per the size of the plants. The most impactful categories were identified for indirect emissions, associated with dissolved GHGs discharged in the surface water body and due to energy consumption, which accounted for 13-70% and 10-40%, respectively. The overall territorial carbon footprint of the wastewater treatment service was also quantified to provide evidence-based decision support system (DSS) and prepare systemic mitigation strategies.


Assuntos
Gases de Efeito Estufa , Purificação da Água , Pegada de Carbono , Efeito Estufa , Gases de Efeito Estufa/análise , Itália
3.
Chemosphere ; 262: 128415, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33182128

RESUMO

The occurrence, fate and removal of microplastics (MPs) in a wastewater treatment plant (WWTP) in Central Italy were investigated together with their potential adverse effects on anaerobic processes. In the influent of the WWTP, 3.6 MPs.L-1 were detected that mostly comprised polyester fibers and particles in the shape of films, ranging 0.1-0.5 mm and made of polyethylene and polypropylene (PP). The full-scale conventional activated sludge scheme removed 86% of MPs, with the main reduction in the primary and secondary settling. MPs particles bigger than 1 mm were not detected in the final effluent and some loss of polymers types were observed. In comparison, the pilot-scale upflow granular anaerobic sludge blanket (UASB) + anaerobic membrane bioreactor (AnMBR) configuration achieved 94% MPs removal with the abatement of 87% of fibers and 100% of particles. The results highlighted an accumulation phenomenon of MPs in the sludge and suggested the need to further investigate the effects of MPs on anaerobic processes. Accordingly, PP-MPs at concentrations from 5 PP-MPs.gTS-1 to 50 PP-MPs.gTS-1 were spiked in the pilot-scale UASB reactor that was fed with real municipal wastewater, where up to 58% decrease in methanogenic activity was observed at the exposure of 50 PP-MPs.gTS-1. To the best of our knowledge, the presented results are the first to report of PP-MPs inhibition on anaerobic processes.


Assuntos
Eliminação de Resíduos Líquidos/métodos , Anaerobiose , Reatores Biológicos , Itália , Microplásticos , Plásticos , Polietileno , Esgotos , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...